Editorial note to : T . Levi - Civita , The physical reality of some normal spaces of Bianchi and to : Einsteinian ds 2 in Newtonian fields . IX : The analog of the logarithmic potential

نویسندگان

  • Malcolm A. H. MacCallum
  • M. A. H. MacCallum
چکیده

As mentioned in the accompanying biography, Levi-Civita and his teacher Ricci,1 prompted by Felix Klein, wrote an important review of tensor calculus (under the name of ‘absolute differential calculus’) in 1901 [1]. Einstein, advised by Marcel Grossmann, began to study this in 1912 and corresponded with Levi-Civita about it in the period leading up to the publication of the first paper on general relativity.2 Levi-Civita was thus well informed of Einstein’s work and had the mathematical tools to contribute to the field. He published many papers in the early years of general relativity (according to [2], about 40 in all) and engaged in popularization of the theory. While many of his papers are of interest, we have chosen here to present the two in which he gives the first publication of two very widely-used (and rediscovered) exact solutions in general relativity. The only other exact solutions papers before 1920 which are quoted in [3] are those of Schwarzschild, Droste and Reissner from 1916, of Weyl from 1917 and of Kottler and Nordström from 1918. Fuller discussions of both solutions can be found in [4], Sections 7.1 and 10.2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Operator-valued tensors on manifolds

‎In this paper we try to extend geometric concepts in the context of operator valued tensors‎. ‎To this end‎, ‎we aim to replace the field of scalars $ mathbb{R} $ by self-adjoint elements of a commutative $ C^star $-algebra‎, ‎and reach an appropriate generalization of geometrical concepts on manifolds‎. ‎First‎, ‎we put forward the concept of operator-valued tensors and extend semi-Riemannian...

متن کامل

Some notes on ``Common fixed point of two $R$-weakly commuting mappings in $b$-metric spaces"

Very recently, Kuman et al. [P. Kumam, W. Sintunavarat, S. Sedghi, and N. Shobkolaei. Common Fixed Point of Two $R$-Weakly Commuting Mappings in $b$-Metric Spaces. Journal of Function Spaces, Volume 2015, Article ID 350840, 5 pages] obtained some interesting common fixed point results for two mappings satisfying generalized contractive condition in $b$-metric space without the assumption of the...

متن کامل

ON THE LIFTS OF SEMI-RIEMANNIAN METRICS

In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...

متن کامل

Estimating Height and Diameter Growth of Some Street Trees in Urban Green Spaces

Estimating urban trees growth, especially tree height is very important in urban landscape management. The aim of the study was to predict of tree height base on tree diameter. To achieve this goal, 921 trees from five species were measured in five areas of Mashhad city in 2014. The evaluated trees were ash tree (Fraxinus species), plane tree (Platanus hybrida), white mulberry (Morus alba), ail...

متن کامل

Bulk Viscous Bianchi Type VI0 Cosmological Model in the Self-creation Theory of Gravitation and in the General Theory of Relativity

In the second self-creation theory of gravitation and in the general theory of relativity, Bianchi type VI0 cosmological model in the presence of viscous fluid is studied. An exact solution of the field equations is given by considering the cosmological model yields a constant decelerations parameter q=constant and the coefficients of the metric are taken as A(t)=[c1t+c<su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011